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MECHANICAL FOUNDATIONS OF BIREFRINGENCE
OF PHOTO-ELASTOPLASTIC MEDIA

Tatsuo TokuOKA
Department of Aeronautical Engineering, Kyoto University, Japan

Abstract—General birefringent formulae for an optically elastoplastic medium are theoretically deduced from
the mechanical point of view. A hypothetical photo-elastoplastic medium is defined, i.e. the index tensor is a
function of the elastic strain tensor and the plastic strain tensor. According to the principle of isotropy of
space, the index tensor is explicitly expressed by the elastic strain tensor and the plastic strain tensor, or by the
stress tensor and the total strain tensor. The directions of polarization for a given wave-vector are parallel to
the secondary principal axes of the diametral conic section of the pseudo-strain quadric, cut by a plane parallel
to the wave-front. The birefringent effect is the product of the secondary principal pseudo-strain difference and
a scalar function of the invariants of the elastic strain and the plastic strain. Two special deformation states are
investigated. Polynomial approximations are presented. In first-order approximation, the birefringent effect is
expressed by a linear combination of stress and strain, which is the formula proposed by several investigators
[1, 2, 3, 4, and 6).

1. INTRODUCTION

THERE have been reported several experimental and theoretical investigations with
respect to the birefringent properties of plastic solids in the elastoplastic deformation
region. A formula, which indicates that the birefringent effect is expressed as a linear
combination of stress and strain, has been proposed by Filon and Jessop [1], Coker and
Filon [2], Bayoumi and Frankl[3], and Fujii and Tokuoka[4] A generalization of the
formula for large deformation was advanced by Tokuoka and Miyakawa [5). But all of
the above studies should be regarded as semi-empirical ones. The author presented
another paper [6], in which a proposition is introduced from the microscopic point of
view and the directions of polarization are specified. But the mechanical foundations of
these formulae cannot be called to be too firm.

In this paper, the photo-elastoplastic medium will be defined mathematically and
the general birefringent formula for such a material will be proposed.

2. DEFINITION OF PHOTO-ELASTOPLASTIC MEDIA

The birefringent properties of a non-magnetic transparent material depend completely
upon the dielectric constants of the material for a particular observing wave-frequency
[7 or 8]

In the system of Gaussian units the dielectric constant and the magnetic permeability
of the vacuum are both unity and the magnetic permeability of all transparent materials
may be assumed to be unity.

When a given artificially birefringent material is deformed, intermolecular changes of
angle and distance occur and the orientation of the molecules is changed. The dielectric
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tensor € = |l¢;;|| and the index tensor n = |n;;||, which is the inverse matrix of &€ and which
specifies the velocity of propagation throughout the stressed material, may be considered
as the macroscopic dielectric mean effects of these changes and deviations from the
equilibrium positions.

Thus the birefringent properties of a given material depend completely upon the
functional relationship between the index tensor and the deformation state, which may
be considered as the macroscopic geometric mean results of these changes and deviations.

A deformation state of a mechanically elastoplastic material is specified by the elastic
strain tensor ge = Yge; || and the plastic strain tensor pe = |pe;;|. The observable strain

tensor e = |l¢;|| is assumed to be the sum of ge and pe, ie.

e = Ee+pe,

or (2.1)

e; = gej+pey, (,j=1,23) }

From the above mentioned considerations, we propose the following definition.
DEFINITION (Photo-Elastoplastic Medium) A photo-elastoplastic medium is a continuous
material such that (1) 1 is a continuous single-valued function of ge and pe, and depends on
the material coordinate (material inhomogeneity), the observing light wave-frequency, and
the thermodynamical variables; (2) ny does not depend explicitly on the spatial coordinate
(spatial homogeneity); (3) there is no preferred direction in space (isotropy); (4) when
g€ = pe = 0, 1) reduces to nol, where n, is the index coefficient in the natural undeformed
state and I is the unit tensor.

The above defined material is an ideal and hypothetical one in which the optical
effect arises as a result of strain alone, and the proposed material will not necessarily
provide an exact description of the complete behaviour of a real birefringent material
in which time dependence will probably be a significant factor.

When a given solid is stressed in a definite manner, the material deforms along a
certain deformation path and will reach a deformation state, which depends on the given
material. Then, when the mechanical state uncouples from the weak electric field state,
the elastic strain and the plastic strain, appearing as the arguments of the index tensor
in the above definition, depend on the mechano-constitutive equation of the given material.

3. PHOTO-CONSTITUTIVE EQUATIONS
The mathematical expression of (1) and (2) of the definition is

" = fl(Ee, pe), (3‘1)

where f, is tacitly assumed to depend on the material coordinate, the observing wave-
frequency, and the thermodynamical variables, and, for simplicity, they are omitted from
(3.1) and the following expressions.

From (2.1) we may express (3.1) as

n = f(ge, ). (3.2)

In the mechanically pure elastic material, the mechanical constitutive equation is
expressed by [9]

t = gle), (33)
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where t = ||t;;| is the stress tensor and g is an isotropic function of e. If our photo-
elastoplastic material has the one-to-one correspondence between the state of stress and
the elastic state of strain,

t = h(ge), (3.4)

it can be inverted, i.e. the elastic strain tensor ge is a single valued function of the stress
tensor t. The Hencky body and the Prandtl-Reuss body are subjected to (3.4) in special
cases, that is, for Hooke’s law. Then (3.2) is reduced to

n= fZ(h_ l(t)’ e) = f3(t9 e); (35)

where h™!(t) = ge is the inverse relation of (3.4).
The requirement of isotropy (3) of the definition is expressed by the condition

QQ ™! =1£,(QeeQ 1, QpeQ 1), (3.6)
for all orthogonal transformation matrices Q(t) = ||Q,.j(t)
matrix of Q(¢),ie. QQ ' =Q Q=1

According to a result of Rivlin [10], a hemitropic polynomial f; of two tensor variables
g€ and pe admits a representation of the form

, where Q7 !(¢) is the inverse

fi(ze, pe) = (10 + ao)l+a ze+azpe
+azge” +ape’ +as(gepe + pege) + ag(ge’pe + pege’) 3.7)
+a4(gepe® +pe’ge) + ag(ge’pe’ + pe’re?),
where

a, = a(tr ge, tr ge?, tr ge3, tr pe, tr pe?, tr pe’, 38)
tr gepe, tr ge?pe, tr zepe?, tr ge2pe?), (y=0,1,2,...,8); '

when the material is in the natural undeformed state, i.e. ge = pe = 0, a, = 0 holds by
(4) of the definition; and we note that, for any two matrices a and b,

2 3
ab = " Z Aiiby; || and tra = z ay,
k=1 k=1

in a Cartesian coordinate system,
If we define the pseudo-strain tensor

e* = e+ o pe+a,pe? +ozpe? + o (zepe + pepe)

+as(ge’pe + pepe’) + ag(gepe’ + pe’ge) (3.9
+a4(ge’pe® + pe?ge?),
where
a,E“Z‘ G=12....7; (3.10)

the index tensor is a linear function of e* such that

N = (no+ap)l+ae* (3.11)
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The pseudo-strain tensor defined by (3.9) depends not only on a given deformation
state, but also on the dielectric properties of a given medium.

By the same process, the photo-elastoplastic material subjected to (3.4), has the
photo-constitutive equation:

N = (no+bo)l+s, (3.12)
where
s = b,t+bye+bst?> +be? +bs(te+et)
+ bg(t?e + et?) + b(te* + e*t) (3.13)
+ bg(t?e? +e%t?),
and

b, = bftrt tr?, tr’ tre,tr e, tr e,

tr te, tr t2e, tr te?, tr t2e?), (3.14)
0 for t=e=0.

bo

4. POLARIZATION AND BIREFRINGENCE
According to the photo-constitutive equation (3.11), the index ellipsoid

gt = 1 (4.1
and the pseudo-strain quadric
Ele*t = +1 (4.2)

have the same principal directions, where the one row matrix € denotes a radius vector
and &' its transposed matrix.

Consider the section of the index ellipsoid cut by the diametral plane perpendicular
to the wave-vector, namely parallel to the wave-front. The section is an ellipse and has
at least two principal directions which are called the secondary principal axes. These
axes are parallel to the directions of polarization in this wave-front [7 or 8]

Cutting the pseudo-strain quadric by the same diametral plane produces a conic
section. By relation (3.11) the principal axes of this conic section and the above mentioned
ellipse are identical; and the secondary principal values of the index coefficient and the
pseudo-strain are related by

r’; = '70+a0+a1e;l’ (a = 19 2)3 (43)

where the primes indicate the secondary principal values [6].

The directions of polarization are parallel to the axes of the section of the index
ellipsoid. If the standard convention of the plane of polarization is introduced which
assumes that the plane of polarization contains the direction of the magnetic field and is
perpendicular to the electric field, the wave-velocity polarized parallel to one secondary
axis is proportional to the semi axis perpendicular to it {7, p. 18].

Then the velocities v, of the wave polarized along the secondary principal axis
correlate with the secondary principal values of the index coefficient such that

12

v:x = Cz"l;+ 1» (a = 15 2)’ (mod 2)a (44)
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where ¢ is the wave-velocity in a vacuum.
Then (4.3) are

02 = B+ cXag+ae¥,,), (e=1,2), (mod.2), (45)

where v, is a wave-velocity in the undeformed natural state of a given material.
The fringe-order per unit thickness is expressed by

N = w(i,—i,), (4.6)
Uy 0y

where w is a particular observing wave-frequency.
From (4.5) and the polarized wave-length A, = v,/w, we have

N, = w(l,-—i) ___i/(vo—v{,)’
v, U A\ Uy
c 2
N, = 1—\/ [1+<v—) (a0+ale:',l-1):|'
1]

The wave-length of visible light is about 3 ~ 8 x 10”* mm and the maximum value
of the fringe-order for a real photo-elastoplastic material, e.g. celluloid, may be assumed
to be less than ten order per mm. Then we obtain

o\ 2
'1—\/ E+ <—> (a0+a1e:"):| ’< 1072,
Vo

and

which implies that

c 2
(——) (ap+a.e¥)|<2x1072
Yo
Thus we can estimate to a good approximation that
P 1 cz(a+a ¥, (=12, (mod.?2) 4.7)
v; - Vo 20(3) (1] 1€2+1) o =12} &)y .
and the fringe-order per unit thickness is
N = A(e¥ —e¥), (4.8)
where
2w
A = —2?‘3;01 = Cal

is the photoelastic sensitivity of a given material and is a function of the invariants of
e and pe, w, and the thermodynamical variables.
For a material whose photo-constitutive equation is (3.12), we can deduce

N = C(s) —55), 4.9

where s, are the secondary principal values of s.



54 TaTsuo TOKUOKA

5. SPECIAL CASES
5.1 Purely elastic deformation region
In this case the plastic strain tensor vanishes identically, and (3.1) is reduced to

n = f,(e). (5.1)

If a given material is mechanically elastic, (3.3) holds. Then the photo-constitutive
equation becomes

n = f(t). (5.2)

Equations (5.1) and (5.2) are expressed as

N = (o +ao)l+ a,e + ase?
and (5.3)
'] = (”0+b0)l+blt+b3t2
respectively, and the birefringent effects are
N = Ca, (& -2
and (81— &) } (5.4)
N = Cby(t, - 1),
where
&= e-}-a—:’e2
a,
and (5.5)
i=t+2%2
= P

are called the modified strain tensor and the modified stress tensor, respectively [11], and

a, = aftre,tre? tred), (y=0,1,3),

ae(0,0,0) = 0,
(5.6)
b, = b(trt, trt? trtd), (y=0,1,3),
b4(0,0,0) = 0.

5.2 The principal axes of the elastic strain quadric and the plastic strain quadric coincide,
and the wave-vector is parallel to one of these axes

When the principal axes of the elastic strain quadric and the plastic strain quadric
are the same, they coincide with those of the stress quadric and the total strain quadric
according to (3.4).

In the usual two-dimensional photo-elastoplastic experiment, the state of stress or
the state of strain are two-dimensional and the ray of light propagates perpendicular to
the side-planes of a specimen, that is, the wave-front is parallel to one of the principal
plane of these quadrics. Thus the secondary principal axes are identical to the principal
axes of these quadrics.



Mechanical foundations of birefringence of photo-elastoplastic media 55
Then, if the secondary principal values of ge, pe, t, and e are equal to ge., pe., t,, and
e, (@ = 1, 2), respectively, the secondary principal values of e* and s are specified by
e} = ge,+0,pe,+0ype;’ +aspe;
+ 20 g€ 0, + 2ispelpe, + 20gpeipel’ (5.7)
+ 2050, a=1,2)
and

S; = blt;+ bze; +b3t;2 +b4e;2

+2bstle, +2bgt e, + 2bstle? (5.8)
+2bgt2e?,  (x=1,2)

respectively. Substituting (5.7) into (4.8), or (5.8) into (4.9), the birefringent effects can be
expressed by ge, and pe;, or t, and €.

6. POLYNOMIAL APPROXIMATIONS

We can expand the phenomenological coefficients a, in terms of the inv.riants with
respect to ge and pe, and b, in terms of the invariants with respect to t and e

6.1 Zero-th approximation
All phenomenological coeflicients are zero, thus

1 = 1nol,

and (6.1)
N=0

The birefringent effect does not appear.
6.2 First-order approximation
In this case

do = Agtrget i trpe, ay =250, a; = 24, }

Ay =Ea,=as=adg=a, =ag =0; (6.2)
and
bg= A trt+i,tre, by =20, b, = 2;120,}
by=b,=bs=bg=b,=bs=0. (6.3)
Then we have
= (No+A;trge+4,trpe)l
+ 24ty gp€ + 25 0p8, 6.4)

H20
e* = Ee+ ‘pe
Hio
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and
N = (o+A; trt+1, tre)l
+ 21 ot + 2z 08, (6.5)
s = 20t + 201508,

where 4, 4. ..., ji;o are material constants specified by the observing wave-frequency.
In the case specified in Section 5.2, we have

Hao

e:l = Ee;+—]’e(lz’
10
(x=1,2) (6.6)
Sy = 20110ty +2f208,
and
, o, B0, /
N = Al:(Eel_Eez)""_(Pel—Pez)]s
Hio
N = Cy(ty —15)+ Cyle — €)), (6.7)

where C; = 2Cji,, and C, = 2Cji,,,.
The second relation of (6.7) is the formula proposed by Filon and Jessop [1], Coker
and Filon [2], Bayoumi and Frankl [3], Fujii and Tokuoka [4], and Tokuoka [6].

6.3. Second-order approximation
In this case,

Qg = Ay T g+ 4, tr pe + A5(tr ge)? + A,(tr pe)?
+ As(tr ge)(tr pe) + Ag tr ge2 + 1, tr pe?
+ Ag T gepe,

a; = 2010+ 24y, tr g€+ 24, tr pe > 6.8)

Ay = 2py0+ 22 tT g€+ 20z, T pe,

Q3 = Vag, G4 = V31, Q5 = V33,

ag=a,=ag=0

and
by = A, trt+ 2, tre+A;(tr )2 +,(tr )

+ As(tr t)(tr e)+ A tr t*+ 1, tr e?
+ Ag trte,
by = 2i;0+20ay, trt+2j,, tre, > (6.9)
by, = 2fiz0+ 2[5, trt+2fi,, tre,
by = V3, by=7V3, bs=7Vj,

bg = b, = bg =0,
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where 4,, 4, ..., V3, are material constants specified by the observing wave-frequency.

In the case specified in Section 5.2, substituting (3.10), (5.7), and (6.8) into (4.8), or
substituting (5.8) and (6.9) into (4.9); we obtain the second-order approximation of the
birefringent effects.

7. SUMMARY AND CONCLUSIONS

1. A hypothetical photo-elastoplastic medium is defined such that the index tensor
is a function of the elastic strain tensor and the plastic strain tensor.

2. The general photo-constitutive equations are deduced by means of the principle
of isotropy of space.

3. The directions of polarization for a given wave-vector are identical with the
secondary principal axes of the conic section of the pseudo-strain quadric, cut by the
diametral plane parallel to the wave-front.

4. The fringe-order per unit thickness is the product of the secondary principal
pseudo-strain difference and a scalar function of the invariants of the elastic strain tensor
and the plastic strain tensor.

5. The case in which the stress tensor is a single-valued function of the elastic strain
tensor is investigated.

6. Two special deformation states, i.e. (1) purely elastic deformation, (2) the principal
axes of the elastic strain quadric and the plastic strain quadric coincide and the wave-
vector is parallel to one of these axes, are presented.

7. Polynomial approximations of the photo-constitutive equations and the bire-
fringent effects are presented. When the principal axes of two quadrics coincide, the bire-
fringent effect in first-order approximation is expressed as a linear combination of stress
and strain, which coincide with the results proposed by several investigators [1, 2, 3, 4,
and 6]
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Résumé—Les formules générales biréfringentes, quant a un milieu optiquement élastoplastique, sont théorique-
ment déduites du point de vue mécanique. Un milieu photo-élastoplastique hypothétique est défini, c’est a
dire que le tenseur d’indice est une fonction du tenseur de la tension élastique et du tenseur de la tension plastique.
Selon le principe de I'isotropie de I’espace, le tenseur d’indice est clairement exprimé par le tenseur de la tension
¢élastique et par le tenseur de la tension plastique, ou bien par le tenseur de I'effort et le tenseur de la tension
totale. Les directions de polarisation pour un vecteur d’ondes donné, sont paralléles aux axes secondaires
principaux de la section diameétrale conique de la quadrique de la pseudo-tension, coupée par un plan paralléle
a I'onde enveloppe. L'effet biréfringent est le produit de la différence de la pseudo-tension secondaire principale
et d’une fonction scalaire des invariants de la tension élastique et de la tension plastique. Deux états spéciaux
de déformation y sont investigués. Des approximations polynémes y sont présentées.

Dans une approximation de premier ordre, 'effet biréfringent est exprimé par une combinaison linéaire
d’effort et de tension, formule proposée par plusieurs rechercheurs [1, 2, 3, 4, et 6].

Zussammenfassung—Allgemeine doppelrefringente Formeln fiir ein optisch elastoplastisches Medium werden
theoretisch vom mechanischen Gesichtspunkt aus deduziert. Ein hypothetisches photo-elastoplastisches Medium
wird definiert d.h. der Index Tensor ist eine Funktion des elastischen Belastungstensors und des plastischen
Belastungstensors. Gemiss dem Prinzip der Raumisotropie wird der Index-Tensor ausdriicklich durch den
elastischen Belastungs Tensor und den plastischen Belastungs Tensor, oder durch den Spannungs Tensor und
den totalen Belastungstensor ausgedriickt.

Die Polarisationsrichtungen fiir einen gegebenen Wellenvektor laufen parallel mit den sekundiren Haupt-
achsen des diametralen Kegelschnittes der quadratischen Pseudospannung, mittels einer Ebene parallel zur
Wellenfront geschnitten. Der doppelrefringente Effekt ist das Produkt des sekundidren Hauptpseudospannungs-
Unterschiedes und einer skalaren Funktion der Invarianten der Elastizititsspannung und der plastischen
Spannung. Zwei hesondere Fille von Formverinderung wurden untersucht. Annéherungen polynomer Natur
werden gezeigt. In der Anndherung erster Ordnung wird der doppelrefringente Effekt durch eine lineare Kombi-
nation von Spannung und Dehnung ausgedriickt; das ist die von mehreren Forschungsarbeitern vorgeschlagene
Formel [1, 2, 3, 4, und 6}

Ab6crpakT—O6mmse GopMynsl ABOHHOTO NyHenpeJOMIICHHS IS ONTHYECKH 3MACTOIUIACTHYECKOH Cpembl
TEOPeTHYECKH pa3paboTaHHBl C MexaHW4ecKOH Touku 3peHusi. OnpefesieHHa FUIOTeTHYecKas (OTO-
3NaCTOIUTACTHYECKAA Cpela TAe TEH30p MOKa3aTeA ABIseTcA (QyHKUMeldl TeH30pa 3JaCTHYHOrO Hamps-
MEHHA M TEH30pPA IUIACTHYECKOTO HAampshkeHHA. Cnenys NPHHLATNY M30TPOIMM NPOCTPAHCTBA, TEH30D
NOKa3aTe/isl ABHO BLIPAXEH TEH30PAMH 3JIACTHYHOTO M IUIACTHYECKOrO HANPSXKEHHUS, WIM TEH3OPOM
HaNpsXEHUsl M TOTANbHLIM TeH30pOoM acdopmanun. Hanpapnenns mojApH3auuu IUis JAHHOIO BEKTOpA
BOJIHBl MapajulenbHbl CEKOHIAPHBIM TIJIaBHBIM OCSM IOHAMETPHYECKOTO KOHMYECKOTO CEYEHHS TICEBO-
nepopmanHoHHOH kBagpUkU. DbdpexT NBOHHOTO JIyYENPESIOMIEHUS ABIAETCA IPOH3BEAEHHEM DAa3HMLBI
CEKOHJAPHOM T/IaBHOH NCEBAO-IeDOPMALHH W CKaNAPHOH (YHKUMM HHBAPHAHTOB 3JACTHYHOIO HAMDS-
XEHUA ¥ MnacTHueckoft aedopmanmu. ViccnenosanHsl ABa 0COGEHHBIX COCTOAHUA ieGOPMALIMK U TIPEICTa-
BJICHHBI IOJIMHOMHHAJIbHbIE Npubinxkenus. B npubnwxenun nepsoro nopsaxa 3ddext mBoitHoro nyue-
NpeJIoMIIeHAst BBIpaxeH B (opme nuneiHOM koMOMHalmMu HanpskeHus v aedopmauuum—dopmyna yke
NpeAsoKEeHHasA APYTuMH HccnenoBarensmu. [1,2, 3,41 6.]



